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Boundary-layer transition on a rotating cone in axial flow 
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The purpose of the present paper is to investigate the structure of the laminar- 
turbulent transition region for the three-dimensional boundary layer along a 30' cone 
rotating in external axial flow. Spiral vortices, which were assumed as small 
disturbances in the present stability analysis, are observed experimentally in the 
transition region. The process of transition to a turbulent boundary layer is visualized 
in detail. When the ratio of rotational speed to external axial flow is increased, the 
critical and transition Reynolds numbers decrease remarkably. The spiral angle and 
the number of vortices appearing on the cone decrease as the rotational speed ratio 
is increased. 

1. Introduction 
A detailed study of laminar-turbulent transition in the boundary layer along a cone 

rotating in axial flow contributes to the understanding of the basic mechanism in 
transition regions of complex three-dimensional boundary layers on rotating axi- 
symmetric bodies and also in internal flows of turbomachines, because in the case of 
rotating cones one can investigate changes in the boundary-layer characteristics 
caused by the rotational motion by using a small number of geometrical and 
mechanical parameters. Although previous studies of rotating cones were carried out 
for boundary layers with heat and mass transfer (Illingworth 1953 ; Salzberg & Kezios 
1965; Tien & Tsuji 1965; Koh & Price 1967) and for those in still fluid (Tien & 
Campbell 1963 ; Kreith 1966 ; Kappesser, Greif & Cornet 1973; Koosinlin, Launder 
& Sharma 1974), the mechanism of the transition phenomenon has not been clarified. 
Only a transition region on a rotating disk in still fluid has been studied in detail (see 
e.g. Gregory, Stuart & Walker 1955; Chin & Litt 1972; Kobayashi, Kohama & 
Takamadate 1980). Recently Mueller et al. (1981) observed a transition region on a 
cylindrical body rotating in an axial flow. In  the case of rotating cones, centrifugal 
instability must play an important role in the transition phenomenon. 

The purpose of the present paper is to clarify experimentally the structure of the 
transition region for an incompressible boundary layer along a cone rotating in axial 
flow. The cone has a total included angle of 30°, as shown in figure 1, where the 
rotation is expected to have a remarkable effect upon the transition phenomenon. 
The experiment is compared with a theoretical analysis obtained numerically on the 
basis of the linear stability theory of Kobayashi (1981). 
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FIGURE 1 .  Rotating cone in axial flow and coordinate system. 

2. Theoretical analysis 
I n  the linear stability theory, small perturbations were assumed to be of spiral 

vortices. The origin 0’ of an orthogonal curvilinear coordinate system (x’, y’, 2‘) is 
fixed on the surface of the rotating cone, as seen in figure 1 ,  and the y’ axis is chosen 
to coincide with the vortex axis, so that the x’ axis makes an angle E to  the meridian 
of the cone. The velocity perturbations were written in vector form as 
V’ = V(z’) expi(az’-At). The wavenumber CL in the z’ direction is real and h is 
complex, with the real part A, related to the phase velocity h,/a and the imaginary 
part hi being the amplification rate; t is the time. A set of perturbation equations 
governing the instability and a numerical procedure for solving the eigenvalue 
problem were then given. From these equations it can be seen that a significant 
parameter governing the present phenomenon is the local rotational speed ratio S 
( =  wR/U,) ,  which is defined as the ratio of the local circumferential velocity wR a t  
the cone surface to the local flow velocity U, at the outer edge of the boundary layer, 
where w denotes the angular speed of the cone, and R the local radial distance from 
the axis of symmetry. The predicted direction of the spiral-vortex axis, which makes 
an angle e to the circumferential direction, was determined under the condition that 
the amplification of the perturbations is a maximum. The perturbations then 
propagate a t  an angle e relative to  the meridian of the cone. A numerical example 
was shown for a 30’ cone at the local rotational speed ratio S = 3. 

Because S varies along the cone surface, additional numerical analyses were made 
a t  S = 1-5 and 2 on the basis of the linear stability theory mentioned above. The 
results are given in table 1 .  The displacement thickness 6, of the laminar boundary 
layer and the momentum thickness 6,, calculated from the meridional component of 
the velocity field, are given by using the following dimensionless expressions: 

where R is the local radial distance from the axis of symmetry and 1’ is the kinematic 
viscosity of the fluid. H (  = 6,/6,) is the shape parameter. The Reynolds number Re, 
is defined as Re, = U,.E/v, where P is the distance from the apex of the cone along 
the meridian. The critical Reynolds number Re,,, is the minimum value of Re, in 
the state of neutral stability, and Re,,, gives a state in which the amplification rate 
of perturbations becomes maximum for the angle E given in table 1 I The dimensionless 
wavenumber CT is defined as B = ad, sin 0 using the wavenumber a in the x’ direction, 
and uc and urn are the wavenumbers associated with the Reynolds numbers Rezgc 
and Re,,, respectively. 
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- - 
E S 4 8, H Rez,, Rex,n ,  ffl2 urn 

1.5 1442 0665  2.17 30.20 1.21 x 103 4.94 x 1 0 4  0 7 5  1.60 
2 1.225 0.608 2.01 22.5' 8 3 5 x  10' 2 . 8 4 ~  lo4 0 7 5  1.48 
3 0.819 0454  1.81 13.6' 5.21 x lo2 1.12 x lo4 0 6 3  1.10 

TABLE 1 .  Numerical data for laminar boundary layer on a 30' cone rotating in axial flow and 
its stability analysis in relation to rotational speed ratio S 
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FIGURE 2. Distributions of pressure coefficient c p  and velocity Ue/tJm 
at outer edge of boundary layer. 

3. Experiments 
3.1. Apparatus and procedure 

We used a low-turbulence wind tunnel (Ito et al. 1980) of the Laboratory for Air-Flow 
Measurements in the Institute of High Speed Mechanics, Tohoku University. The test 
section was set in a state of open-jet type, 508 mm long. The shape of the contraction 
exit is a regular octagon of subtense length 293 mm. The test cone (figure 1 )  had 
total angle 28 = 30', and base diameter 2R, = 89.2 mm and geheration-line length 
L = 172.7 mm; i t  was made of aluminium alloy, and its surface was finished smooth. 
The cone was mounted horizontally in the test section of the wind tunnel and was 
driven by a d.c. motor through a V-belt. The rotating speed can be controlled 
continuously up to  3400 r.p.m. The turbulence intensities (u'")j/Uoo of the wind 
tunnel were 0.05-0-15 yo for wind speed Urn of 1-14 m/s in a state where the test cone 
was set in the test section; here u' denotes the longitudinal velocity fluctuations at 
a position 58 mm downstream from the centre of the contraction exit. 

A hot-wire anemometer was used to measure the velocity field. I n  order to 
determine the direction of the spiral vortices appearing in the transition region, we 
used a parallel probe of two hot wires separated by 4.2 mm, which could be rotated 
around the z' axis through a range of 180'. We decided the angle c of the spiral vortices 
by measuring the direction in which periodical signals obtained from the two hot wires 
were in the same phase. Flow patterns in the transition region were visualized by 
spreading titanium tetrachloride on the surface of another black-painted 30' cone, 
which was 198.5 mm in base diameter and was set in another 600 mm x 600 mm 
open-circuit wind tunnel. 

Figure 2 shows distributions of the surface pressure c p  and the flow velocity U, 
a t  the outer edge of the boundary layer along the surface of the test cone. The surface 



344 R. Kobayashi, Y .  Kohama and M .  Kurosawa 

FIQURE 3. Flow visualization of boundary layer on rotating cone in axial flow : (a) U ,  = 2.05 m/s, 
N = 300 r.p.m.; (b )  1.7 m/s, 670 r.p.m.; (c) 1.0 m/s, 1200 r.p.m. 
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FIQURE 4. Cross-sectional observation of spiral vortices; U ,  = 1.7 m/s, N = 670 r.p.m. 

pressure p was measured in the non-rotating state. The pressure coefficient c p  is 
defined as c p  = 2(p-p,)/pU", where p ,  is the upstream pressure and U ,  is the 
approaching-flow velocity. As Okamoto, Yagita & Kamijima (1976) verified, the 
surface pressure is not affected by rotation of the cone. The flow velocity U,  was 
calculated by the measured pressure coefficient c p  using Bernoulli's equation. 

3.2. Flou~ visualizations of transition region 

The photographs in figure 3 show flow patterns of the boundary-layer flow on the 
rotating cone. I n  these photographs a uniform flow is given from the left, and the 
rotation vector of the cone is in the right direction of the rotation axis as shown in 
figure 1. Figure 3 ( a )  represents the flow condition in which the cone surface is covered 
wholly with the laminar boundary layer, where circumferential streaks on the cone 
surface are from the titanium tetrachloride spread on the whole surface. I n  figure 3 ( b )  
one can see regular spiral vortices in the transition region between the laminar 
boundary layer on the left and the turbulent boundary layer on the right. As shown 
in figure 3 ( c ) ,  the position of the transition region shifts in the direction of the cone 
apex as the rotation speed N of the cone is increased further. I n  figure 4, cross-sections 
of the spiral vortices are made visible by a sheet of light along the meridian of the 
rotating cone. In  the linear stability theory we assumed disturbances of spiral vortex 
type by analogy with the rotating-disk problem (Kobayashi et al. 1980). Figures 3 
and 4 show that the assumption for the disturbances in the stability theory is 
reasonable. Figure 5 is a close-up photograph of the spiral vortices near to  the 
turbulent region, in which one can find the second instability appearing regularly 
along the spiral-vortex axes and a transition process from the regular flow pattern 
to the turbulent flow. 

3.3. Critical and transition Reynolds numbers 

Experimental results for the critical Reynolds number Re,,c and the transition 
Reynolds number Re,,, are shown in figure 6 ;  they were measured under various 
conditions of the approaching-flow velocity ( U ,  = 0.76-13.52 m/s) and the rotation 
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FIGURE 5. Transition process from spiral vortices to turbulent state; U ,  = 2.9 m/s, N = 700 r.p.m., 
direction of rotation from right to left. 
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FIGURE 6. Critical Reynolds number Re,., and transition Reynolds number Re,,t. 

speed ( N  = 1119-3230 r.p.m.). The solid lines represent the theoretical values of Re,,, 
and Re,,m in table 1 .  The value of Re,,, = 3.2 x i05 for S = 0 in figure 6 was obtained 
as follows. I n  the case of a non-rotating cone (8 = O ) ,  the perturbation equation of 
the present stability theory is reduced to the Orr-Sommerfeld equation. In  that case 
i t  is known (Stuart 1963) that the critical Reynolds number obtained from the 
Orr-Sommerfeld equation relates closely to  the shape parameter H of boundary 
layers. Because H = 2,56 a t  S = 0 for the 30° cone, we have taken Re, = 545 
(based on displaczment thickness) from Stuart (1963), which corresponds to 
Rex3, = 3-2 x lo5. 
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Frequency (Hz) 
FIGURE 7. Frequency spectra of velocity fluctuations in transition region: ( a )  S = 2.01, 

Re, = 2.18 x lo4; ( b )  2.44, 2-67 x lo4; ( c )  2.66, 2.92 x lo4; ( d )  3.50, 3.94 x lo4. 

Generally speaking, i t  should be noted that measured results for the critical 
Reynolds number Re,-, for instability might be dependent on the sensitivity of 
measuring instruments and the techniques used. Because the values of Re,,c 
measured in the present experiment were to be compared with the aforementioned 
linear instability analysis, careful measurements were made by using the hot-wire 
probe and a frequency analyser. Figure 7 shows frequency spectra of velocity 
fluctuations in the transition region. As shown with curve ( a ) ,  the critical point 2, 
was determined as the point where periodic signals obtained from the hot-wire probe 
were detected not by an oscilloscope but on the frequency spectrum. The 
corresponding values of Re,,, measured by the hot-wire probe coincided with those 
measured by the flow-visualization technique. Since a determination of the transition 
point .Et by use of the oscilloscope was also indefinite, the transition point 2, was 
defined here as the point where velocity fluctuations gave a frequency spectrum for 
the turbulent boundary layer as shown with curve ( d )  in figure 7 .  

It can be seen from figure 3 ( b )  that  the transition from laminar to turbulent flow 
on the rotating cone occurs not suddenly at  a certain point but in a wide region of 
the cone surface. An example for U ,  = 3.66 m/s and N = 2934 r.p.m. indicated 
2, = 76 mm for the critical point and &= 154 mm for the transition point, so that 
the length &-2,  of the transition region was 78 mm. As shown in figure 6, the 
experimental values of the critical Reynolds number decreases with increasing 
rotational speed ratio S, which is the same trend as predicted by the theoretical 
analysis. There is, however, a quantitative difference between the experiment and 
the theoretical analysis. The experimental values of Re,,, are rather close to the 
theoretical Reynolds number Re,,, for maximum amplification. 

I n  order to consider the difference of the critical Reynolds number R,,c between 
the theory and the experiment, velocity distributions in the laminar boundary layer 
were measured for S = 078, 1.12 and 1.67, and are compared with the theoretical 
results for S = 1 and 2 in figure 8. As the displacement thickness 6, of the laminar 
boundary layers was as small as about 0.5 mm in the experiment, the accuracy of 
the velocity distributions measured was not sufficient. It could be said that there is 
no considerable difference between the theory and the experiment for the laminar 
velocity distributions. 

F L M  127 12 
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FIGURE 8. Velocity distributions in laminar boundary layers: -, theory; - - - -, experiment. 

As is well known, theoretical values of critical Reynolds number for instability of 
two-dimensional boundary layers are considerably lower than experimental values 
measured for natural disturbances, especially in a state of external low-turbulence 
flow, while, for centrifugal instabilities such as Taylor instability, critical values 
obtained from linear stability analyses are comparatively consistent with experi- 
ments. I n  the case ofS  = 0,  the present problem corresponds to  the former instability, 
while in the case of large S it  includes a strong centrifugal instability. As seen in figure 
6, the difference in the critical Reynolds number Re,,c between the theory and the 
experiment tends to become smaller as the local rotational speed ratio S is increased. 
It should also be noticed that the present experiment was made in flows of low 
turbulence. 

Salzberg & Kezios (1965) measured the transition Reynolds number Re,,, 
(=  U,Zt/v) by experiments on local mass transfer from a rotating 30" naphthalene 
cone of 2R, = 68 mm, and formulated it in relation to  their rotational parameter 
wR,/U, as 

The transition point Zt was determined from a deformation of the naphthalene surface 
due to  mass transfer. I n  figure 9 this relation is compared with the present experiment 
by using the rotational parameter wR,/LT,, because i t  is difficult to express their 
fomula (2) using the parameters in figure 6. Salzberg & Kezios' results are rather close 
to the present critical Reynolds number. Turbulence intensities in their experiment 
are not known. As indicated in Kobayashi (1981), it seems to be reasonable that the 
local critical Reynolds number Re,,, should be related not to the rotational parameter 
oR,/U, but to the local rotational speed ratio S( = wR/U,). Okamoto et al. (1976) 
said from their experiment that  the laminar-turbulent transition depends on the 
velocity ratio wR/U,  and that the velocity ratio indicating the transition point was 
about 1.45 for the 30" cone. 

3.4. Measurements of the spiral vortices 

Two methods have been used in order to measure the direction e of the axis of the 
spiral vortices. The first method is that  using the parallel probe mentioned in s3.1, 
and the second one is direct measurement from many photographs obtained by the 
flow visualization. The results are given in figure 10. Both values measured by the 
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FIQURE 9. Comparison of the present experiment with Salzberg & Kezios' experiment (curve (a)) .  
Present experiment: 0, critical ; 0 ,  transition. 

abovementioned two methods agree well. The appearances of the spiral vortices were 
more fluctuating than uncertainty intervals ( &  1.0') for measurements of e by both 
of the methods. The curve (a )  in figure I0 is the theoretical direction of the wall shear 
stress in the laminar boundary layer, which is drawn for the purpose of comparison. 
It is clear that the angle 8 measured by the flow-visualization technique differs from 

12-2 
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FIGURE 11. Number n of spiral vortices in relation to rotational speed ratio AS: 0,  experiment; 
A, theory using uc; v, theory using urn. 

the direction of the wall shear stress. I n  figure 10 the same symbols for the flow 
visualization are given for a measurement along a meridian of the cone in one 
photograph. Figure 10 shows that the direction E of the spiral vortices decreases as 
the rotational speed ratio S is increased, and that the theoretical values of E shown 
by the solid line agree well with the experimental ones. When one examines the same 
symbols, one can find that the direction s of each spiral vortex somewhat decreases 
downstream. This behaviour is similar to that for the rotating disk in still fluid, in 
which case the s-value of spiral vortices decreases downstream from 14' to 7' 
(Kobayashi et al. 1980). As is found in figure 10, the angle E becomes zero when the 
parameter S increases above about 5. It means that the spiral vortices change into 
the so-called Taylor vortices like piled doughnuts. We are interested in the fact that 
the spiral angle s becomes zero not as S +  00 but a t  a finite S-value, because i t  is 
known for spiral flows between rotating cylinders (Schwarz, Springett & Donnelly 
1964) that  an axisymmetric mode of instability changes into a spiral mode at a certain 
axial flow velocity as the velocity is increased from zero. 

Figure 11 shows the number n of spiral vortices appearing on the rotating cone, 
which was obtained from the photographs for different values of the approaching flow 
velocity U ,  and the rotation speed N .  Because the back side of the cone was invisible 
on those photographs, the uncertainty interval of n measured is estimated to be & 5 yo. 
The figure indicates that  the number n of spiral vortices decreases as the rotational 
speed ratio S increases. The prediction of n can be made by use of the relation 
n = (T sin €(Re, sin 6)a/S,. If one adopts the theoretical values of ( T ~ ,  (T, and e in table 
1 and the experimental critical Reynolds number Rezyc from figure 6, one obtains two 
values of n for each S, as shown in figure 11. The solid curve is drawn through their 
mean values. It can be said that the prediction ofn  is close to  the experimental data. 

The work of Mueller et al. (1981) for a rotating cylinder, which appeared during 
the final stage of preparing the present paper, also showed a similar trend to figure 
10. They said that an angle (presumably 90'- s, although the definition is not shown) 
for the rotating cylinder was approximately equal to  arctan S. In their case the 
number n of spiral vortices remains approximately constant regardless of S or 
Reynolds number. This is different from the result in figure 1 1 for the rotating cone. 
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It is especially interesting that they observed simultaneous appearance of Tollmien- 
Schlichting waves and spiral vortices in a transitional process, as we have not 
observed such a state for the rotating cone. 

4. Conclusions 
Theoretical and experimental studies were carried out for the instability and the 

structure of transition region of the three-dimensional boundary layer on a 30' cone 
rotating in external axial flow. The results are summarized as follows. 

( i )  The critical Reynolds number Re,,,, the direction E of the spiral vortex axis and 
the number n of spiral vortices were theoretically determined in relation to the local 
rotational speed ratio S on the basis of the linear stability theory, 

(ii) It was confirmed by the experiment that  the disturbances of spiral-vortex type, 
predicted in the stability theory, appear in the transition region. 

(iii) The process of transition from the onset of the spiral vortices to the turbulent 
state was observed in detail by using the flow-visualization technique. 

(iv) The critical Reynolds number Re,,, and the transition Reynolds number Re,,, 
decrease with increasing rotational speed ratio S as shown in figure 6. The theoretical 
relation of Rexsc to S is qualitatively consistent with the experiment. However, the 
theoretical analysis gave smaller values than the experimental ones. 

(v) The direction E of the spiral vortices decreases as the parameter S increases, 
as seen in figure 10. The theory agrees well with the experiment. The E-value of each 
spiral vortex reduces downstream. When the parameter S is above about 5, the angle 
E becomes zero, so that the spiral vortices change into Taylor vortices. 

(vi) The number n of spiral vortices decreases as the parameter S increases, as seen 
in figure 11.  
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